Electrical Formulas Chart Pdf
Related Topics. Electrical units, amps and electrical wiring, wire gauge and AWG, electrical formulas and motorsRelated Documents. Maximum copper wire length with 2% voltage drop. Conforming abbreviations according IEC. EV - Electrical Vehicle - Charging Stations - Power vs. Amps and Voltage - AC vs.
DS - Single Phase vs. We don't collect information from our users. Only emails and answers are saved in our archive. Cookies are only used in the browser to improve user experience.Some of our calculators and applications let you save application data to your local computer. These applications will - due to browser restrictions - send data between your browser and our server. We don't save this data.Google use cookies for serving our ads and handling visitor statistics. Please read for more information about how you can control adserving and the information collected.AddThis use cookies for handling links to social media.
Please read for more information.
Electronics For Dummies Cheat SheetFromByElectronics is more than just schematics and circuits. By using various components, such as resistors and capacitors, electronics allows you to bend electric current to your will to create an infinite variety of gizmos and gadgets. In exploring electronics, use this handy reference for working with Ohm’s, Joule’s, and Kirchhoff’s Laws; making important calculations; determining the values of resistors and capacitors according to the codes that appear on their casings; and using a 555 timer and other integrated circuits (ICs). Important Formulas in ElectronicsWith just a handful of basic mathematical formulas, you can get pretty far in analyzing the goings-on in electronic circuits and in choosing values for electronic components in circuits you design. Ohm’s Law and Joule’s LawOhm’s Law and Joule’s Law are commonly used in calculations dealing with electronic circuits.
These laws are straightforward, but when you’re trying to solve for one variable or another, it is easy to get them confused. The following table presents some common calculations using Ohm’s Law and Joule’s Law. In these calculations:V = voltage (in volts)I = current (in amps)R = resistance (in ohms). OrCapacitors in parallel:Kirchhoff’s Current and Voltage LawsKirchhoff’s Circuit Laws are commonly used to analyze what’s going on in a closed loop circuit. Based on the principle of conservation of energy, Kirchhoff’s Current Law (KCL) states that, at any node (junction) in an electrical circuit, the sum of currents flowing into that node is equal to the sum of currents flowing out of that node, and Kirchhoff’s Voltage Law (KVL) states that the sum of all voltage drops around a circuit loop equals zero. For the circuit shown, Kirchhoff’s Laws tells you the following:KCL: I = I 1 + I 2KVL: V battery – V R – V LED = 0, or V battery = V R + V LEDCalculating the RC time constantIn a resistor-capacitor (RC) circuit, it takes a certain amount of time for the capacitor to charge up to the supply voltage, and then, once fully charged, to discharge down to 0 volts.Circuit designers use RC networks to produce simple timers and oscillators because the charge time is predictable and depends on the values of the resistor and the capacitor.
If you multiply R (in ohms) by C (in farads), you get what is known as the RC time constant of your RC circuit, symbolized by T:A capacitor charges and discharges almost completely after five times its RC time constant, or 5 RC. After the equivalent of one time constant has passed, a discharged capacitor will charge to roughly two-thirds its capacity, and a charged capacitor will discharge nearly two-thirds of the way.
Electrical Formulas Chart
Electronics: Reading Resistor and Capacitor CodesElectronics can sometimes be difficult to decipher. By decoding the colorful stripes sported by many resistors and the alphanumeric markings that appear on certain types of capacitors, you can determine the nominal value and tolerance of the specific component. Resistor color codesMany resistor casings contain color bands that represent the nominal resistance value and tolerance of the resistor. You translate the color and position of each band into digits, multipliers, and percentages.The table that follows outlines the meaning of the resistor color bands. Color1st Digit2nd DigitMultiplierToleranceBlack00x1±20%Brown11x10±1%Red22x100±2%Orange33x1,000±3%Yellow44x10,000±4%Green55x100,000n/aBlue66x1,000,000n/aViolet77x10,000,000n/aGray88x100,000,000n/aWhite99n/an/aGoldn/an/ax0.1±5%Silvern/an/ax0.01±10%Capacitor value referenceIn electronic circuits, the value of a capacitor can be determined by a two- or three-digit code that appears on its casing.
The following table outlines values for some common capacitors. MarkingValuenn (a number from 01 to 99) or nn0nn picofarads (pF)101100 pF1020.001 µF1030.01 µF1040.1 µF221220 pF2220.0022 µF2230.022 µF2240.22 µF331330 pF3320.0033 µF3330.033 µF3340.33 µF471470 pF4720.0047 µF4730.047 µF4740.47 µFCapacitor tolerance codesIn electronic circuits, the tolerance of capacitors can be determined by a code that appears on the casing. The code is a letter that often follows a three-digit number, for instance, the Z in 130Z.
The following table outlines common tolerance values for capacitors. Note that the letters B, C, and D represent tolerances in absolute capacitance values, rather than percentages. These three letters are used on only very small (pF range) capacitors.
CodeToleranceB± 0.1 pFC± 0.25 pFD± 0.5 pFF± 1%G± 2%J± 5%K± 10%M± 20%Z+80%, –20%. Electronics: Integrated Circuit (IC) PinoutsThe pins on an IC chip provide connections to the tiny integrated circuits inside of your electronics.
To determine which pin is which, you look down on the top of the IC for the clocking mark, which is usually a small notch in the packaging but might instead be a little dimple or a white or colored stripe. By convention, the pins on an IC are numbered counterclockwise, starting with the upper-left pin closest to the clocking mark. So, for example, with the clocking notch orienting the chip at the 12 o’clock position, the pins of a 14-pin IC are numbered 1 through 7 down the left side and 8 through 14 up the right side.